Brain mapping tools for neuroscience research

Daniel Tward (dtward@cis.jhu.edu)

NeuroData and Center for Imaging Science Department of Biomedical Engineering Johns Hopkins University

The goal of brain mapping

Daniel Tward (dtward@cis.jhu.edu)

Johns Hopkins University

Brain mapping tools for neuroscience research

1. Registration

Align images into a standard coordinate system

- Enrich information by fusing modalities
- Analyze different specimens statistically
- Build databases of information indexed to spatial coordinates

1. Registration

Align images into a standard coordinate system

- Enrich information by fusing modalities
- Analyze different specimens statistically
- Build databases of information indexed to spatial coordinates

2. Interpretation

Leverage information stored in atlas coordinates.¹ MBA ARA

- Label images with standard ontologies
- Index to gene expression, cell types, tractography, etc.

 $^{^1 \}rm MBA:$ Mouse brain architecture brainarchitecture.org, ARA: Allen reference atlas connectivity.brain-map.org/

3. Transformation

Studying transformations quantifies growth or atrophy

- Here thickness change in transentorhinal region measured from longitudinal MRI²
- Previously only observed at autopsy

²Tward, Daniel J., et al. "Entorhinal and transentorhinal atrophy in mild cognitive impairment using longitudinal diffeomorphometry." Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring 9 (2017): 41-50. Daniel Tward (dtward@cis.jhu.edu) Johns Hopkins University Brain mapping tools for neuroscience research

3. Transformation

Studying transformations quantifies growth or atrophy

Significant thickness atrophy (%/yr)

- Here thickness change in transentorhinal region measured from longitudinal MRI²
- Previously only observed at autopsy

²Tward, Daniel J., et al. "Entorhinal and transentorhinal atrophy in mild cognitive impairment using longitudinal diffeomorphometry." Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring 9 (2017): 41-50. Daniel Tward (dtward@cis.jhu.edu) Johns Hopkins University Brain mapping tools for neuroscience research

The ingredients of a brain mapping tool

Transformation model: What types of mappings do we consider?

Similarity: How good is an alignment?

Regularization: How likely is a given transformation?

Daniel Tward (dtward@cis.jhu.edu)

Johns Hopkins University

Brain mapping tools for neuroscience research

Challenges and solutions

Most brain mapping techniques were developed for medical imaging, but neuroscience data faces unique challenges:

- Incomplete or sliced data
- Artifacts or damaged tissue
- Multiple different modalities or appearance

We use machine learning techniques to predict one image from another, while jointly performing registration³

³Tward, Daniel Jacob, et al. "Diffeomorphic registration with intensity transformation and missing data: Application to 3D digital pathology of Alzheimer's disease." BioRxiv (2019): 494005.

Daniel Tward (dtward@cis.jhu.edu) Johns Hopkins University Brain mapping tools for neuroscience research

ARDENT⁴: NeuroData's open source brain mapping tool

Publications and code available online from neurodata.io/reg

Ingredient	Choice	Benefit
Transform	Diffeomorphism	Smooth invertible fluid transform
Similarity	Log likelihood	Enables statistical approaches to
		artifacts and multi-modality
Regularization	Kinetic energy	Enables sparse representations ef-
		fective in high dimensional bias
		variance tradeoff ^{5,6}

⁴Affine and Regularized Diffeomorphic Numeric Transform. ⁵Tward, Daniel, et al. "Parametric surface diffeomorphometry for low dimensional embeddings of dense segmentations and imagery. IEEE transactions on pattern analysis and machine intelligence (2016) ⁶Tward, Daniel, et al. "Estimating diffeomorphic mappings between templates and noisy data: Variance bounds on the estimated canonical volume form. Quarterly of Applied Mathematics (2019).

Acknowledgements

People

- Michael Miller (JHU)
- Joshua Vogelstein (JHU)
- Susumu Mori (JHU)
- Juan Troncoso (JHU)
- Marilyn Albert (JHU)
- Partha Mitra (CSHL)
- Brian Lee (JHU)
- Vikram Chandrashekhar (JHU)
- Devin Crowley (JHU)

Funding

NIH: P41EB015909, R01NS086888, R01EB020062, R01NS102670, U19AG033655, R01MH105660, P50AG05146

NSF: 16-569 NeuroNex contract 1707298, ACI1548562 (Extreme Science and Engineering Discovery Environment)

Kavli Neuroscience Discovery Institute, BrightFocus Foundation, Dana Foundation

Daniel Tward (dtward@cis.jhu.edu)

Johns Hopkins University

Brain mapping tools for neuroscience research