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Summary
•Motivation: To develop an automated neuron segmentation algorithm to accelerate construction of
mouse neuromorphological atlases.
•Method: Generated an image segmentation dataset from point-based neuron traces and compared a
multi-layer perceptron model to a baseline model and a state of the art convolutional neural network.
•Results: The multilayer perceptron model performed best on a dataset involving 46 (100µm)3 fully
traced subvolumes.

Introduction
Imaging advances have made it possible to assem-
ble atlases of neuromorphology, but manual tracing
remains a bottleneck [5]. Neurons are well resolved
(Fig. 1), but image inhomogeneities render simple
automated segmentation solutions, such as intensity
thresholding, ineffective. On the other hand, the
large scale of the data (∼ 15 TB per channel), makes
segmentation efficiency crucial.
Many existing “ground-truth” neuron traces involve
points in space, and edges connecting them, making
them incompatible with state of the art algorithms
that operate on voxels, such as convolutional neu-
ral networks. Here, we convert point-based neuron
traces to neuron segmentation masks, then imple-
ment a multi-layer perceptron model that performs
well in the task of neuron segmentation.

Figure 1: Coronal view of an image volume in the Mouselight
dataset. Neuron traces are overlaid in color, and a cutout of a
fluorescently labeled neuron is enlarged to illustrate resolution.

Materials
Our work uses data from the Mouselight Project
at HHMI Janelia [5]. The dataset involves 50
(100µm)3, or 330×330×100 voxel subvolumes taken
from two different mouse brains. All neuronal pro-
cesses contained in the subvolumes were traced.
The image segmentation algorithms compared were:

1 Logistic Classifier (LC ): a baseline segmentation
model, whose input is the voxel’s intensity [4].

2 TRAILMAP (TM ): state of the art segmentation
model [2].

3 Multi-Layer Perceptron (MLP): our proposed
segmentation model, whose input is the 7× 7× 7
neighborhood centered at the voxel, with 1
hidden layer of size 100 [4].

Rationale for MLP Model
We start with the popular assumption that voxel la-
bels are increasingly dependent the closer the voxels
are. In particular, we make a local Markov assump-
tion that the class membership of voxel i (denoted
Ci), once conditioned on all voxels in a local neigh-
borhood, is independent of the class membership of
voxels outside the neighborhood.
We use a multi-layer perceptron (MLP) to approxi-
mate the posterior distribution P (Ci|Ni) where Ni

is the set of intensities in the neighborhood of voxel
i. We chose MLPs due to their flexibility and scal-
ability. Finally, we estimate the parameters θ by
optimizing cross-entropy loss, which is equivalent to
a maximum likelihood procedure in our binary clas-
sification setting.

Methods
After 4 subvolumes were removed due to trace mis-
alignment, the subvolumes were separated randomly
into a training, validation, and test sets of size 38, 4
and 4 respectively. The traces were converted into
image segmentations as follows:
1 For points: fill in the nearest voxel.
2 For edges: fill using the Bresenham algorithm [1].
3 Fill in voxels within 1µm (a reasonable radius of
axons in mice [3]) of previously filled voxels.

LC and MLP were both trained on 76000 random
voxels from the training set. Training data for both
of these models was centered and scaled to unit vari-
ance. TM was initialized with the original weights
and the weights that performed best on the valida-
tion set over 70 training epochs were saved.

Results

Figure 2: Receiver operating characteristic curves for the three
classifiers on the test set.

Figure 3: Example in the test set (maximum intensity projec-
tion), with segmentations given by translucent red masks. Left:
Original image, Center: Ground truth, Right: MLP segmenta-
tion after removal of components with volume < (2µm)3.

Conclusion
As shown in Fig. 2, our MLP model performed
better than both the baseline intensity classifier,
LC, and the TRAILMAP model. The fact that
TRAILMAP did not even perform better than the
baseline classifier suggests that either the model was
not trained for long enough, or there was not enough
training data. TRAILMAP may be the best classi-
fier if these limitations are addressed, but the high
AUC of the MLP model (0.96) indicates that there
is not much room for improvement in this binary
classification task. As shown in Fig. 3, false posi-
tive regions still exist, and true positive neuron pro-
cesses are sometimes split into sections. So, future
work will focus on these higher level structures to
complete the automatic reconstruction of neurons.
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