
PROCESSING AND ANALYZING TERASCALE CONJUGATE ARRAY TOMOGRAPHY DATA

Alexander Baden1, Eric Perlman, Forrest Collman2, Stephen Smith2, Joshua T. Vogelstein1, Randal Burns1
1 Johns Hopkins University, Baltimore, MD USA
2 Allen Institute for Brain Science, Seattle, WA USA

CHALLENGE
• Routine collection of millions of micrographs.

• Multi-stage software reconstruction pipelines require de-
tailed record keeping.

• Tera- and peta-voxel data volumes required specialized data
management.

ACTION
• Designed a pipeline for processing and releasing AT data.

• Provide visualization capabilities at key stages of the pipeline.

• Leveraging the cloud for scale out.

RESOLUTION
• Open source. Anyone can benefit from our work or join in the

development process.

• Resource sharing. Software developed for AT is relevant for
EM and vice versa.

• Community focus. Collaboration benefits everyone.

PIPELINE OVERVIEW

NEUROGLANCER INTEGRATION INTO NDVIZ
Imaging data is inherently visual. As such, there is a strong desire to convey information with rich, dynamic visualization tools.
The neuroscience community has produced several state-of-the-art tools (TrakEM2, Reconstruct, Vaa3D) that enable interactive data
exploration and analysis. As data sizes increase, key features of these tools have been migrated to the Web. In addition to the basic
graphics rendering required of a Desktop application, a Web application must handle the process of retrieving and caching remote
data.
The open source Web viewer Neuroglancer [4] handles the data retrieval and data rendering for 3D microscopy data and volumetric
annotations. By building on top of Neuroglancer, we can immediately begin to develop interesting data visualizations specific to
the problems we want to solve without having to re-engineer the fundamentals (see Point Match Visualization). Additionally, since
Neuroglancer is open source, we can contribute features of interest back to the neuroscience community and integrate features
contributed by the community as well.

POINT MATCH VISUALIZATION

NeuroDataViz displaying DAPI (green) and DAPI transformed one
voxel in z (red) with point matches overlayed as lines (cyan). Data
from Forrest Collman (unpublished).

We are able to visualize point matches to aid in diagnosing
alignment problems. First, we dynamically request sets of
points from the Render Point Match database. Then, we ren-
der lines between each pair of points overlaid on top of imaging
channels. We are able to render the same imaging channel with
an offset – e.g. an increase of 1 voxel in the z-direction. By ren-
dering two offset layers and the point matches, we can deter-
mine whether the point matches are correct or whether we have
enough point matches. Using that information, we can regener-
ate point matches or re-run the solver with different parameters
to improve alignment.

RENDER INTEGRATION
A single array tomography dataset can encompass millions of data tiles corresponding to different (x, y, z) locations and different
stains (imaging channels), resulting in a large volume of metadata. During 3D Volume Reconstruction, we wish to apply filters
and transforms to specific image tiles, further complicating matters. Render [1] provides a framework for storing tile metadata
and transformations in tilespecs and materializing transformed tiles using a rich suite of web services. These services enable us to
dynamically interact with the data, enabling rapid visualization to assess both imaging and alignment quality.

NDSTORE MATERIALIZATION

Slabs of data are materialized in bulk with render Slabs are split into cuboids for storage Cubic mipmaps are generated

Fast access to data is essential for sharing among collaborators
and with the public at large. We materialize image stacks from
render into 3-dimensional cuboids, the basic building block of
the NeuroData storage infrastructure. In this format we can
then support fast, multi-planar access to data for random-access
visualization or computation.
We render the data at a resolution as close as possible to the
input images. For the conjugate EM and array tomography, EM
is rendered at a voxel size of 3×3×50 nm and the AT channels at
96× 96× 50 nm, both being stored in the same coordinate space
with different base resolutions. Each type of data are stored as
a unique channel in the same project.

NDSTORE ANALYSIS
Once materialized, algorithmic exploration of the data becomes
simple . One example is classification of synapses based on fea-
tures found by integrating multiple channels.

(a) (b) (c) (d)

(a) Synaptogram: Visualization of the identified synapses
across all imaged channels.

(b) Dendrogram: Shows the Hierarchical GMM (Gaussian
mixture model) structure, branch size denotes size of clus-
ter.

(c) Stacked Means Plot: The block structure corresponds with
the dendrogram. Rows show the feature means within the
cluster and columns represent the size of each cluster.

(d) Correlation Matrices: A selected few correlation matrices to
highlight clusters 1211 and 1222. Both clusters have highest
average excitatory expression and show an interesting anti-
correlation in nr2b and nmdar.

To The Cloud
We have a prototype of the software stack running in the cloud
(on Amazon Web Services). This deployment consists of:

• TIFF images are stored directly in Amazon S3

• Render and MongoDB both running in Docker containers

• ndstore (with S3 for cuboid storage, redis for caching, and
DynamoDB for key storage)
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FUTURE WORK
The current workflow is a functional prototype. All compo-
nents are being designed to be used by others, either on local
hardware or in the cloud. We plan to take advantage of the
elasticity of the cloud and price benefits of "spot" instances to
improve performance and reduce computational costs for the
tasks which can be trivially parallelized (e.g., materialization).
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