Reports


Technical Reports
  1. V. Chandrashekhar, D. J. Tward, D. Crowley, A. K. Crow, M. A. Wright, B. Y. Hsueh, F. Gore, T. A. Machado, A. Branch, J. S. Rosenblum, K. Deisseroth, and J. T. Vogelstein. CloudReg: Automatic Terabyte-Scale Cross-Modal Brain Volume Registration. bioRxiv, 2021.
  2. Jaewon Chung, Eric Bridgeford, Jesus Arroyo, Benjamin D. Pedigo, Ali Saad-Eldin, Vivek Gopalakrishnan, Liang Xiang, Carey E. Priebe, and Joshua Vogelstein. Statistical Connectomics. arXiv, 2020.
  3. Joshua T. Vogelstein. P-Values in a Post-Truth World. arXiv, 2020.
  4. H. S. Helm, A. Basu, A. Athreya, Y. Park, J. T. Vogelstein, M. Winding, M. Zlatic, A. Cardona, P. Bourke, J. Larson, C. White, and C. E. Priebe. Learning to rank via combining representations. arXiv, 2020.
  5. Polina Golland, Jack Gallant, Greg Hager, Hanspeter Pfister, Christos Papadimitriou, Stefan Schaal, and Joshua T. Vogelstein. A New Age of Computing and the Brain. arXiv, 2020.
  6. Zeyi Wang, Eric Bridgeford, Shangsi Wang, Joshua T. Vogelstein, and Brian Caffo. Statistical Analysis of Data Repeatability Measures. arXiv, 2020.
  7. D. Mhembere, D. Zheng, J. T. Vogelstein, C. E. Priebe, and R. Burns. Graphyti: A Semi-External Memory Graph Library for FlashGraph. arXiv, 2019.
  8. G. Kiar, E. Bridgeford, W. G. Roncal, (CoRR), V. Chandrashekhar, D. Mhembere, S. Ryman, X. Zuo, D. S. Marguiles, R. C. Craddock, C. E. Priebe, R. Jung, V. Calhoun, B. Caffo, R. Burns, M. P. Milham, and J. Vogelstein. A High-Throughput Pipeline Identifies Robust Connectomes But Troublesome Variability. bioRxiv, 2018.
  9. G. Kiar, R. J. Anderson, A. Baden, A. Badea, E. W. Bridgeford, A. Champion, V. Chandrashekhar, F. Collman, B. Duderstadt, A. C. Evans, F. Engert, B. Falk, T. Glatard, W. R. G. Roncal, D. N. Kennedy, J. Maitin-Shepard, R. A. Marren, O. Nnaemeka, E. Perlman, S. Seshamani, E. T. Trautman, D. J. Tward, P. A. Vald├ęs-Sosa, Q. Wang, M. I. Miller, R. Burns, and J. T. Vogelstein. NeuroStorm: Accelerating Brain Science Discovery in the Cloud. arXiv, 2018.
  10. G. Kiar, E. Bridgeford, V. Chandrashekhar, D. Mhembere, R. Burns, W. R. G. Roncal, and J. T. Vogelstein. A comprehensive cloud framework for accurate and reliable human connectome estimation and meganalysis. bioRxiv, 2017.
  11. C. E. Priebe, Y. Park, M. Tang, A. Athreya, V. Lyzinski, J. T. Vogelstein, Y. Qin, B. Cocanougher, K. Eichler, M. Zlatic, and A. Cardona. Semiparametric spectral modeling of the Drosophila connectome. arXiv, 2017.
  12. D. Zheng, D. Mhembere, J. T. Vogelstein, C. E. Priebe, and R. Burns. FlashR: R-Programmed Parallel and Scalable Machine Learning using SSDs. CoRR, abs/1604.06414, 2017.
  13. D. Zheng, R. Burns, J. Vogelstein, C. E. Priebe, and A. S. Szalay. An SSD-based eigensolver for spectral analysis on billion-node graphs. arXiv, 2016.
  14. A. Sinha, W. Roncal, and N. Kasthuri. Automatic Annotation of Axoplasmic Reticula in Pursuit of Connectomes. arXiv, 2014.
  15. M. Kazhdan, R. Burns, B. Kasthuri, J. Lichtman, J. Vogelstein, and J. Vogelstein. Gradient-Domain Processing for Large EM Image Stacks. arXiv, 2013.
  16. A. Banerjee, J. Vogelstein, and D. Dunson. Parallel inversion of huge covariance matrices. arXiv, 2013.