Pubs: Pre-Prints Peer-Reviewed Conf Reports Talks Posters Other Technical Reports T. L. Athey, M. A. Wright, M. Pavlovic, V. Chandrashekhar, K. Deisseroth, M. I. Miller, and J. T. Vogelstein. BrainLine: An Open Pipeline for Connectivity Analysis of Heterogeneous Whole-Brain Fluorescence Volumes . Neuroinformatics , 2023. V. Chandrashekhar, D. J. Tward, D. Crowley, A. K. Crow, M. A. Wright, B. Y. Hsueh, F. Gore, T. A. Machado, A. Branch, J. S. Rosenblum, K. Deisseroth, and J. T. Vogelstein. CloudReg: automatic terabyte-scale cross-modal brain volume registration . Nature Methods , 2021. Ronan Perry, Ronak Mehta, Richard Guo, Eva Yezerets, Jesús Arroyo, Mike Powell and Hayden Helm, Cencheng Shen, and Joshua T. Vogelstein. Random Forests for Adaptive Nearest Neighbor Estimation of Information-Theoretic Quantities . arXiv , 2021. Ali Saad-Eldin, Benjamin D. Pedigo, Carey E. Priebe, and Joshua T. Vogelstein. Graph Matching via Optimal Transport . arXiv , 2021. Jayanta Dey, Ali Geisa, Ronak Mehta, Tyler M. Tomita, Hayden S. Helm, Eric Eaton, Jeffery Dick, Carey E. Priebe, and Joshua T. Vogelstein. Towards a theory of out-of-distribution learning . arXiv , 2021. H. S. Helm, R. D. Mehta, B. Duderstadt, W. Yang, C. M. White, A. Geisa, J. T. Vogelstein, and C. E. Priebe. A partition-based similarity for classification distributions . arXiv , 2020. Jaewon Chung, Eric Bridgeford, Jesus Arroyo, Benjamin D. Pedigo, Ali Saad-Eldin, Vivek Gopalakrishnan, Liang Xiang, Carey E. Priebe, and Joshua Vogelstein. Statistical Connectomics . arXiv , 2020. J. T. Vogelstein. P-Values in a Post-Truth World . arXiv , 2020. H. S. Helm, A. Basu, A. Athreya, Y. Park, J. T. Vogelstein, M. Winding, M. Zlatic, A. Cardona, P. Bourke, J. Larson, C. White, and C. E. Priebe. Learning to rank via combining representations . arXiv , 2020. C. E. Priebe, J. T. Vogelstein, F. Engert, and C. M. White. Modern Machine Learning: Partition Vote . bioRxiv , 2020. Polina Golland, Jack Gallant, Greg Hager, Hanspeter Pfister, Christos Papadimitriou, Stefan Schaal, and Joshua T. Vogelstein. A New Age of Computing and the Brain . arXiv , 2020. Tyler M. Tomita and Joshua T. Vogelstein. Robust Similarity and Distance Learning via Decision Forests . arXiv , 2020. D. Mhembere, D. Zheng, J. T. Vogelstein, C. E. Priebe, and R. Burns. Graphyti: A Semi-External Memory Graph Library for FlashGraph . arXiv , 2019. H. Helm, J. V. Vogelstein, and C. E. Priebe. Vertex Classification on Weighted Networks . arXiv , 2019. J. Xiong, C. Shen, J. Arroyo, and J. T. Vogelstein. Graph Independence Testing . arXiv , 2019. D. Mhembere, D. Zheng, C. E. Priebe, J. T. Vogelstein, and R. Burns. clusterNOR: A NUMA-Optimized Clustering Framework . arxiv , 2019. A. Branch, D. Tward, J. T. Vogelstein, Z. Wu, and M. Gallagher. An optimized protocol for iDISCO+ rat brain clearing, imaging, and analysis . bioRxiv , 2019. D. S. Greenberg, D. J. Wallace, K. Voit, S. Wuertenberger, U. Czubayko, A. Monsees, T. Handa, J. T. Vogelstein, R. Seifert, Y. Groemping, and J. N. Kerr. Accurate action potential inference from a calcium sensor protein through biophysical modeling . bioRxiv , 2018. G. Kiar, E. Bridgeford, W. G. Roncal, (CoRR), V. Chandrashekhar, D. Mhembere, S. Ryman, X. Zuo, D. S. Marguiles, R. C. Craddock, C. E. Priebe, R. Jung, V. Calhoun, B. Caffo, R. Burns, M. P. Milham, and J. Vogelstein. A High-Throughput Pipeline Identifies Robust Connectomes But Troublesome Variability . bioRxiv , 2018. G. Kiar, R. J. Anderson, A. Baden, A. Badea, E. W. Bridgeford, A. Champion, V. Chandrashekhar, F. Collman, B. Duderstadt, A. C. Evans, F. Engert, B. Falk, T. Glatard, W. R. G. Roncal, D. N. Kennedy, J. Maitin-Shepard, R. A. Marren, O. Nnaemeka, E. Perlman, S. Seshamani, E. T. Trautman, D. J. Tward, P. A. Valdés-Sosa, Q. Wang, M. I. Miller, R. Burns, and J. T. Vogelstein. NeuroStorm: Accelerating Brain Science Discovery in the Cloud . arXiv , 2018. S. Wang, C. Shen, A. Badea, C. E. Priebe, and J. T. Vogelstein. Signal Subgraph Estimation Via Vertex Screening . arXiv , 2018. G. Kiar, E. Bridgeford, V. Chandrashekhar, D. Mhembere, R. Burns, W. R. G. Roncal, and J. T. Vogelstein. A comprehensive cloud framework for accurate and reliable human connectome estimation and meganalysis . bioRxiv , 2017. R. Tang, M. Tang, J. T. Vogelstein, and C. E. Priebe. Robust Estimation from Multiple Graphs under Gross Error Contamination . arXiv , 2017. C. E. Priebe, Y. Park, M. Tang, A. Athreya, V. Lyzinski, J. T. Vogelstein, Y. Qin, B. Cocanougher, K. Eichler, M. Zlatic, and A. Cardona. Semiparametric spectral modeling of the Drosophila connectome . arXiv , 2017. D. Zheng, D. Mhembere, J. T. Vogelstein, C. E. Priebe, and R. Burns. FlashR: R-Programmed Parallel and Scalable Machine Learning using SSDs . CoRR, abs/1604.06414 , 2017. D. Zheng, R. Burns, J. Vogelstein, C. E. Priebe, and A. S. Szalay. An SSD-based eigensolver for spectral analysis on billion-node graphs . arXiv , 2016. D. Zheng, D. Mhembere, J. T. Vogelstein, C. E. Priebe, and R. Burns. Flashmatrix: parallel, scalable data analysis with generalized matrix operations using commodity ssds . arXiv , 2016. A. Sinha, W. Roncal, and N. Kasthuri. Automatic Annotation of Axoplasmic Reticula in Pursuit of Connectomes . arXiv , 2014. M. Kazhdan, R. Burns, B. Kasthuri, J. Lichtman, J. Vogelstein, and J. Vogelstein. Gradient-Domain Processing for Large EM Image Stacks . arXiv , 2013. A. Banerjee, J. Vogelstein, and D. Dunson. Parallel inversion of huge covariance matrices . arXiv , 2013.