L. A. De Silva and J. T. Vogelstein. Kernel density networks. From Neuroscience to Artificially Intelligent Systems (NAISys), Cold Spring Harbor Laboratory, NY, USA, 2022.
J. J. How, G. Schuhknecht, M. B. Ahrens, F. Engert, and J. T. Vogelstein. Transfer learning in larval zebrafish (Danio rerio). From Neuroscience to Artificially Intelligent Systems (NAISys), Cold Spring Harbor Laboratory, NY, USA, 2022.
H. Xu and J. T. Vogelstein. Simplest streaming trees. From Neuroscience to Artificially Intelligent Systems (NAISys), Cold Spring Harbor Laboratory, NY, USA, 2022.
E. W. Bridgeford, M. Powell, A. Alyakin, B. Caffo, and J. T. Vogelstein. Batch Effects are Causal Effects: Applications in Human Functional Connectomes. Neuromatch 3, 2020.
J. Chung, J. Dey, G. Kiar, C. E. Priebe, and J. T. Vogelstein. Human Structural Connectomes are Heritable. Neuromatch 3, 2020.
V. Gopalakrishnan, J. Chung, E. Bridgeford, J. Arroyo, B. D. Pedigo, C. E. Priebe, and J. T. Vogelstein. Statistical Methods for Multiscale Comparative Connectomics. Neuromatch 3, 2020.
B. D. Pedigo, M. Winding, T. Orujlu, M. Zlatic, Cardona,Albert, C. E. Priebe, and J. T. Vogelstein. A quantitative comparison of a complete connectome to artificial intelligence architectures. NAIsys, Cold Spring Harbor, NY, USA, 2020.
B. D. Pedigo, M. Winding, A. Saad-Eldin, T. Liu, A. Cardona, M. Zlatic, C. E. Priebe, and J. T. Vogelstein. Statistical tools for nanoscale connectomics: clustering neurons in Drosophila larva brain and other applications. Neuromatch 3, 2020.
R. Perry, J. Zorn, S. Czajko, D. S. Margulies, and J. T. Vogelstein. Permutation-corrected independence testing for high-dimensional fMRI data. Neuromatch 3, 2020.
A. Saad-Eldin, B. D. Pedigo, Y. Park, C. E. Priebe, and J. T. Vogelstein. NeuroGraphMatch. Neuromatch 3, 2020.
J. T. Vogelstein, H. Helm, B. D. Pedigo, R. Mehta, C. E. Priebe, and C. White. A Biological Implementation of Lifelong Learning in the Pursuit of Artificial General Intelligence. NAIsys, Cold Spring Harbor, NY, USA, 2020.
J. Cho, A. Korchmaros, J. T. Vogelstein, M. P. Milham, and T. Xu. Developing a gradient flow framework to guide the optimization of reliability for the study of individual differences. OHBM and Resting State, Fairmont, Dallas, TX, USA, 2020.
J. Cho, A. Korchmaros, J. T. Vogelstein, M. P. Milham, and T. Xu. Impact of Concatenating fMRI Data on reliability for Functional Connectomics. OHBM and Resting State, Fairmont, Dallas, TX, USA, 2020.
J. Hecheng, J. S. Ramirez, J. T. Vogelstein, M. P. Milham, and T. Xu. Assessing functional connectivity beyond Pearson's correlation. Fairmont, Dallas, TX, USA, 2020.
X. Li, J. Cho, M. P. Milham, and T. Xu. Improving brain-behavior prediction using individual-specific components from connectivity-based shared response model. Resting State, Fairmont, Dallas, TX, USA, 2020.
E. Bridgeford and J. T. Vogelstein. Optimal Experimental Design for Big Data: Applications in Brain Imaging. OHBM, 2020.
J. Cho, A. Korchmaros, J. T. Vogelstein, M. P. Milham, and T. Xu. Impact of Concatenating fMRI Data on reliability for Functional Connectomics. OHBM and Resting State, Fairmont, Dallas, TX, USA, 2020.
J. Cho, A. Korchmaros, J. T. Vogelstein, M. P. Milham, and T. Xu. Developing a gradient flow framework to guide the optimization of reliability for the study of individual differences. OHBM and Resting State, Fairmont, Dallas, TX, USA, 2020.
R. Perry and J. T. Vogelstein. Identifying Differences Between Expert and Novice Meditator Brain Scans via Multiview Embedding. OHBM, 2020.
J. Browne, D. Mhembere, T. M. Tomita, J. T. Vogelstein, and R. Burns. Forest Packing: Fast Parallel Decision Forests. SIAM International Conference on Data Mining, Calgary, Alberta, Canada, 2019.
J. T. Vogelstein and C. E. Priebe. Nonparametric Two-Sample Testing on Graph-Valued Data. Duke Workshop on Sensing and Analysis of HighDimensional Data, Durham, NC, USA, 2013.
D. Koutra, Y. Gong, S. Ryman, R. Jung, J. T. Vogelstein, and C. Faloutsos. Are All Brains Wired Equally?Proceedings of the 19th Annual Meeting of the Organization for Human Brain Mapping (OHBM), Seattle, WA, USA, 2013.
M. Mhembere, D. A. Burns, R. A. Vogelstein, J. T. A. Vogelstein, R. J. A. Sussman, D. A. Priebe, C. A. Jung, R. Rex, A. Ryman, and S. Sephira. Multivariate Invariants from Massive Brain-Graphs. OHBM, Seattle, WA, USA, 2013.
S. Sismanis, N. A. Sussman, D. L. A. Vogelstein, J. T. A. Gray, W. A. Vogelstein, R. J. A. Perlman, E. A. Mhembere, D. A. Ryman, S. A. Jung, R. A. Burns, R. A. Priebe, C. E. A. Pitsianis, N. A. Sun, and X. X.. Feature Clustering from a Brain Graph for Voxel-to-Region Classification. 5th Panhellic Conference on Biomedical Technology, Athens, Greece, 2013.
V. Vogelstein, J. T. A. Bock, D. A. Gray, W. A. Sussman, D. A. Burns, R. A. Kleissas, D. A. Marchette, D. A. Fishkind, D. E. A. Tang, M. A. Hager, G. A. Vogelstein, and R. J. A. P. C. E.. Statistical Connectomics. Janelia Farm conference, Statistical Inference and Neuroscience, Loudoun County, VA, USA, 2012.
J. T. Vogelstein, D. L. Sussman, M. Tang, D. E. Fishkind, and C. E. Priebe. Dot product embedding in large (errorfully observed) graphs with applications in statistical connectomics. IMA conference on Large Graphs, University of Minnesota, Minneapolis, MN, USA, 2011.
W. R. Gray, J. T. Vogelstein, J. Bogovic, A. Carass, J. L. Prince, B. Landman, D. Pham, L. Ferrucci, S. M. Resnick, C. E. Priebe, and R. J. Vogelstein. Graph-Theoretical Methods for Statistical Inference on MR Connectome Data. DARPA Neural Engineering, Science and Technology Forum, San Diego, CA, USA, 2010.
J. T. Vogelstein and K. Zhang. A novel theory for simultaneous representation of multiple dynamic states in hippocampus. Society for Neuroscience, San Diego, CA, USA, 2004.
J. T. Vogelstein, L. Snyder, M. Warchol, and D. Angelaki. Up-down asymmetry in memory guided saccadic eye movements are independent of head orientation in space. Society for Neuroscience, Orlando, FL, USA, 2002.