Graph Statistics in Python (graspologic)
Simple, flexible and powerful graph analysis library grounded in statistical theories.
Graspologic offers scikit-learn compliant APIs and it provides clear feedback upon user error.
Graspologic is open-source and commercially usable software, and released under MIT License.
Graspologic was formerly known as GraSPy, and is now co-developed with Microsoft Research.
Publications
- J. Arroyo, A. Athreya, J. Cape, G. Chen, C. E. Priebe, and J. T. Vogelstein. Inference for Multiple Heterogenous Networks with a Common Invariant Subspace. Journal of Machine Learning Research, (142)22:1-49, 2021.
- H. Helm, J. V. Vogelstein, and C. E. Priebe. Vertex Classification on Weighted Networks. arXiv, 2019.
- J. Chung, B. D. Pedigo, E. W. Bridgeford, B. K. Varjavand, and J. T. Vogelstein. GraSPy: Graph Statistics in Python. Journal of Machine Learning Research, (158)20:1–7, 2019.
- C. E. Priebe, Y. Park, J. T. Vogelstein, J. M. Conroy, V. Lyzinski, M. Tang, A. Athreya, J. Cape, and E. Bridgeford. On a two-truths phenomenon in spectral graph clustering. Proceedings of the National Academy of Sciences of the United States of America, (13)116:5995–6000, 2019.
- A. Athreya, D. E. Fishkind, M. Tang, C. E. Priebe, Y. Park, J. T. Vogelstein, K. Levin, V. Lyzinski, Y. Qin, and D. L. Sussman. Statistical Inference on Random Dot Product Graphs: a Survey. Journal of Machine Learning Research, 2018.
- C. E. Priebe, D. L. Sussman, M. Tang, and J. T. Vogelstein. Statistical Inference on Errorfully Observed Graphs. Journal of Computational and Graphical Statistics, (4)24:930–953, 2015.
- L. Chen, J. T. Vogelstein, V. Lyzinski, and C. E. Priebe. A Joint Graph Inference Case Study: the C.elegans Chemical and Electrical Connectomes. Worm, 2015.
- C. E. Priebe, J. Vogelstein, and D. Bock. Optimizing the quantity/quality trade-off in connectome inference. Communications in Statistics - Theory and Methods, (19)42:3455–3462, 2013.
- D. E. Fishkind, D. L. Sussman, M. Tang, J. T. Vogelstein, and C. E. Priebe. Consistent adjacency-spectral partitioning for the stochastic block model when the model parameters are unknown. SIAM Journal on Matrix Analysis and Applications, (1)34:23–39, 2012.
- J. T. Vogelstein, R. J. Vogelstein, and C. E. Priebe. Are mental properties supervenient on brain properties? Scientific Reports, 2011.